Ahmad El-Awa, Mohammad N. Noshi, Xavier Mollat du Jourdin, and Philip L. Fuchs.

Evolving Organic Synthesis Fostered by the Pluripotent Phenylsulfone Moiety (Chem. Rev. 2009, 109, 2315.)

Page 2345. Regretfully, a wrong version of Scheme 91 was inserted in the final manuscript. Please consider the following scheme as the final version of Scheme 91:

Scheme 91

Related text should read (p 2345, Lines 10–18):

To circumvent the aforementioned lack of reactivity, vinyl sulfones **462**, **546**, and **554** were converted to vinyl phosphonates **548**, **549**, **555**, and **556** in 69–82% yield using Noshi's conditions (Scheme 85; cf. **511** \rightarrow **516**).¹⁶¹ Interestingly, ozonolysis of **555** and **556** in CH₂Cl₂/MeOH does not provide aldehyde–methyl esters **559** and **560** but rather gives the easily isolable aldehyde–acyl phosphonates **557** and **558** in near quantitative yield, consistent with the greater stability of acylphosphonates¹⁶⁹ relative to acyl sulfones.

The numbering change caused by the modification above alters the numbering in text and Schemes 92 and 93 as follows.

Related text should read (p 2345 Lines 24–27, p 2346 Lines 1–7):

For example, conversion of generic bromide **561** to phenyl sulfone **562**, C–C bond formation to **563**, followed by reductive cleavage to **564** has failed to exploit the pluripotency of the phenylsulfone. The overall operation requires an introduction/ removal of the activating function simply to install a single C–C bond (probably without stereochemical control). This limitation is especially obvious in the 21st century, where synthesis of **564** from **561** would likely be achieved by a single metal-catalyzed stereocontrolled operation (Scheme 92).

Scheme 92

Related text should read (p 2346, Lines 8–10):

The cumulative power of the sulfur functionality is nicely illustrated in the synthesis of enantiopure lactone 567 (Scheme 93).

Scheme 93

CR900248V 10.1021/cr900248v Published on Web 09/10/2009